

Potentially Useful Analytic Information from Biomass R&D Activities

Tien Nguyen
Office of Planning, Budget and Analysis (OPBA)
Office of Energy Efficiency and Renewable Energy
(EERE)

U.S. Department of Energy

Renewable Energy Modeling Series April 20, 2004

U.S. Department of Energy Energy Efficiency and Renewable Energy

About EERE's OPBA

- Office of Planning, Budget and Analysis; Deputy Assistant Secretary for Business Administration
- Supports each of the 11 technology program offices
- Budget requests assistance and coordination; policy and market analysis; benefits analysis; planning integration; EERE data books and data systems; program evaluation guidance; cross-cutting activities; interface with CFO, NAS, National Assoc. of Public Administrators, etc.

U.S. Department of Energy Energy Efficiency and Renewable Energy

Biomass Technology Platforms

Advanced Biomass Process R&D

Biorefineries Already Exist

Multiple Products from Biomass

- Corn wet mills (Sugar-Based)
 - Ethanol
 - Sweeteners
 - Corn oil
 - Corn starch
 - Etc.
 - Traditional feedstock is corn kernels

- Corn dry mills (Sugar-Based)
 - Ethanol
 - Animal feed (DDGS)
 - Traditional feedstock is corn kernels
- Pulp & paper mills

Emerging Biorefineries

- R&D for dry mills (sugar-based): enzymatic hydrolysis of cellulose from fiber in the corn kernel and cellulose in the stover (residues)
- In a few years dry mills' production of additional ethanol and co-products using corn fiber, followed by the use of corn stover

Future Biorefineries

- Concepts beyond emerging biorefineries
 - Advanced sugar-based products?
 - Syngas-based concepts?
 - Combination of sugar-based and syngas-based production of fuels and chemicals?

"Specialty" Biorefineries

- Biorefineries producing bio-based products, not fuels, are also possible in the near term and mid term
- Example Cargill Dow's "Natureworks"
 - Biodegradable Polylactic Acid (PLA) made from corn sugar
 - Fibers, food containers, and other products
 - Competes with petroleum-based polystyrene, polyethylene, etc.

Sugar-Based Example

NREL's illustrative sugar-based biorefinery

Bio-based Products

- Biorefineries produce chemicals and materials (bio-based products) in addition to fuels, heat and power
- 2004 PNNL/NREL draft report on 12 promising bio-based chemical intermediates EERE is obtaining industry's feedback
- Through 2010: technology development for 3 new bio-based chemicals by DOE in partnership with industry

Chemicals vs. Ethanol Values

Energy Crop Potential

Relying on USDA Agricultural Research Service's R&D on switchgrass

Relying on Forest Service (USDA FS)'s R&D on promising tree species

Potential Beyond Starch Feedstock

- Near to mid term: future ethanol from corn fiber will be 10% of current ethanol from starch in corn kernels
- Mid to long term: stover and other agri-residues, some forest residues and other wastes, some energy crops (100% ethanol increase over corn kernels base)
- Long term: additional forest residues and other wastes, and additional energy crops (additional 100% ethanol increase over corn kernels base)
- U.S. agriculture can support a corn kernels base of 8-9 billion gallons per year (informal consensus)

Analytic Highlights

Remaining Slides

• Insights from past analysis

• An analyst's wish list

GHG and Land Use Changes

- Land use changes have a significant impact on greenhouse gases results
- A better understanding of the following is needed:
 - Economic alternatives and baseline land use
 - Soil carbon changes
 - Biomass harvest yields and improvement over time
 - Nitrogen releases and changes associated with alternative land uses

Feedstock Analysis

 Detailed Analysis for Energy Crops in 2008 using POLYSYS Model

 Potential Availability on Biomass Feedstocks

Bioenergy Crop Production--Production Scenario; \$40/dt

UT-BA

O AK RID GE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Ethanol Demand Analysis

- ORNL/RYM used to develop ethanol demand curve
- Detailed regional and seasonal analyses

Analyzed many scenarios:

- •With and without MTBE restrictions
- •With and without RFG oxygen requirements
- •Low sulfur gasoline standards
- Stricter emissions standards
- •With and without RVP waivers for conventional
- •Various AEO projections of oil prices and gasoline demand

- •RFG Oxygen requirement removed.
- •No MTBE in PADD 2 and California, MTBE limited to 3 % in PADDS 1 and 3
- •Ethanol price is price to refiners, i.e., net of tax incentives..
- •1997 dollars.

Ethanol Logistics Analysis

- Transportation and infrastructure for Renewable Fuels Standard (5 vs. 10 billion gallons) by Downstream Alternatives, Inc.
- Most of infrastructure costs are incurred at terminals
- Retail station costs for E10 are 0.01cent per gallon of ethanol versus 5.7 cents for E85 due to lower throughput of E85

Costs in cents per gallon of ethanol			
	Amortized		
	Investment	Freight	<u>Total</u>
5 billion gallons	0.66	10.5	11.1
10 billion gallons	0.60	5.8	6.4
Difference	0.06	4.7	4.8

Potential Constraints

- Blending limitations: 10% ethanol by volume maximum (5.7% in California)
- Ethanol incentive favors E10, not E85
- Infrastructure costs and barriers
 - Fueling stations for 85% ethanol by volume (E85)
 - Pipelines lower distribution costs, but when will volume justify introduction?
- Multiple bio-based products and market characteristics
- Electricity sales to potential customers near biorefineries

Data Wish List

- A few "reference" biorefinery concepts and costs
- Costs and market information for new fuels and bio-based products from future "reference" biorefinery concepts
- Program funding (congressionally directed projects) affect R&D resources and consequently, data generation schedule